Shall we buy and hold?

Analysis Seminar, March 15, 2006

Jim Zhu

Department of Mathematics
Western Michigan University
Buy good mutual funds and hold on to them is touted by many investment advisors as a sound investment method. We will examine this method using both theoretical analysis and simulation on historical data.
Example: Three Funds

Let’s look at the performances of three mutual funds during a good year followed by a bad year in terms of percentage gain.

<table>
<thead>
<tr>
<th>Funds</th>
<th>%gain – Year1</th>
<th>%gain – Year2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>−50%</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>−18%</td>
</tr>
<tr>
<td>3</td>
<td>11%</td>
<td>−5%</td>
</tr>
</tbody>
</table>

Now which one should we consider the best among the three?
Three Funds: Performances

Let us test with $1000 starting capital. Using all the capital \textbf{buy and hold} we have:

<table>
<thead>
<tr>
<th>Funds</th>
<th>%gain − Year1</th>
<th>%gain − Year2</th>
<th>Balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>−50%</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>−18%</td>
<td>1066</td>
</tr>
<tr>
<td>3</td>
<td>11%</td>
<td>−5%</td>
<td>1054.5</td>
</tr>
</tbody>
</table>

\textbf{The Best:} Fund 2
\textbf{The worst:} Fund 1
Three Funds: Performances

Next put **50%** of available capital in the fund and retain **50%** cash and re-balance at the beginning of the year:

<table>
<thead>
<tr>
<th>Funds</th>
<th>%gain – Year1</th>
<th>%gain – Year2</th>
<th>Balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>−50%</td>
<td>1125</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>−18%</td>
<td>1046.5</td>
</tr>
<tr>
<td>3</td>
<td>11%</td>
<td>−5%</td>
<td>1028.6</td>
</tr>
</tbody>
</table>

The **Best**: Fund 1
The **worst**: Fund 3
Lastly put **200%** of available capital (borrow 100%) in the fund and re-balance:

<table>
<thead>
<tr>
<th>Funds</th>
<th>%gain – Bull</th>
<th>%gain – Bear</th>
<th>Balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>−50%</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30%</td>
<td>−18%</td>
<td>1024</td>
</tr>
<tr>
<td>3</td>
<td>11%</td>
<td>−5%</td>
<td>1098</td>
</tr>
</tbody>
</table>

The Best: Fund 3
The worst: Fund 1
The methods of investing matters.
In general, we denote the percentage investment size of the available capital by s the gain in the good year by g and the loss in the bad year by l. Then the average return per year $G(s)$ is

$$G(s) = (1 + sg)^{1/2}(1 + sl)^{1/2}$$ (1)

It is more convenient to use the return in log scale:

$$f(s) = \ln G(s) = \frac{1}{2} \ln(1 + sg) + \frac{1}{2} \ln(1 + sl).$$
Performance with variable sizes

Drawing the log return functions for Fund 1, Fund 2 and Fund 3 together we see that Fund 3 has the best potential and Fund 1 is the choice when margin is not available.

Figure 1: Log return functions
Test a general investment system

Key information

- The outcomes of the trades in terms of percentage gains
 \[g_1 < g_2 < \ldots < g_N. \]
- The frequency \(p_n \) associated with the outcome \(g_n \).
- The size \(s \) of each trade as the percentage of the available capital.
- The total number of trades \(M \).

Then the total return is \(\Pi_{n=1}^{N} (1 + sg_n)^{M p_n} \) and the average rate of growth per trade is

\[G(s) = \Pi_{n=1}^{N} (1 + sg_n)^{p_n}. \]
The log return function

Equivalently we can use the return in log scale:

\[f(s) = \sum_{n=1}^{N} p_n \ln(1 + sg_n), \]

Here \(p_n \) is the probability for a trade to have a gain \(g_n \). We call this the log return function. Clearly \(G(s) = \exp(f(s)) \).

We define the efficiency index by

\[\gamma = \max_{s \in \left(-\frac{1}{g_N}, -\frac{1}{g_1}\right)} f(s). \]
Remarks

- $\gamma < \infty$ iff $0 \in (g_1, g_N)$. This is the interesting case.
- $s > 1$ – on margins and $s < 0$ – shorts (hard to implement).
- f is concave and, therefore, max of f is always attained at an optimal investment size \bar{s}.
- $G = \exp(\gamma)$ is the average expected rate of growth per trade under the best investment size. The larger the G, the better.
- $\gamma > 0$ – system is potentially profitable.
- However, when $\bar{s} < 0$ it must be used in opposite direction.
Investment with Re-balance

Consider invest in a mutual fund at a fixed percentage s of the total capital with say monthly re-balance. Consider N months and denote the value of a share of the mutual fund at the beginning of each month by $v_n, n = 0, 1, \ldots, N$. We can regard this as an investment system with a profile of
\[
\{g_n = v_n/v_{n-1} - 1 : n = 1, 2, \ldots, N\}.
\]
Investment with Re-balance

Then the log return function and the exponential growth function of this investment system are

\[f(s) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + s g_n), \]

and

\[G(s) = \exp(f(s)) = \prod_{n=1}^{N} (1 + s g_n)^{1/N}, \]

respectively.
Investment with Re-balance

Then the log return function and the exponential growth function of this investment system are

\[f(s) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + s g_n), \]

and

\[G(s) = \exp(f(s)) = \prod_{n=1}^{N} (1 + s g_n)^{1/N}, \]

respectively.

Clearly, \(s = 1 \) corresponding to the strategy of **buy and hold**.
Since most mutual funds underperform stock indices let us test a stock index to gain some insight.
Investing in stock indices

Example: SP500: Jan 1999 – Jan 2005

Best investment size: $\bar{s} = 35\%$.

Total percentage gain: 0.86\%
Investing in stock indices

Example: SP500: Jan 1999 – Jan 2005

Best investment size: \(\bar{s} = 35\% \).

Total percentage gain: 0.86%
Investing in stock indices

Note that the values of SP500 are 1228 on 1/4/1999 and 1202 on 1/3/2005.
Investing in stock indices

Note that the values of SP500 are 1228 on 1/4/1999 and 1202 on 1/3/2005.

Thus, buy and hold will *loss 2.12%*
Investing in stock indices

Note that the values of SP500 are 1228 on 1/4/1999 and 1202 on 1/3/2005.

Thus, buy and hold will lose 2.12%.

Similar phenomenon can be observed since the inception of SP500 in the 1960's adjusted for opportunity cost according to the prime rate.
Investing in stock indices

Note that the values of SP500 are 1228 on 1/4/1999 and 1202 on 1/3/2005.

Thus, buy and hold will loss 2.12%.

Similar phenomenon can be observed since the inception of SP500 in the 1960’s adjusted for opportunity cost according to the prime rate.

This seems suggest that re-balancing is better than buy and hold.
Observe that

\[G''(s) = \exp(f(s))[\left((f'(s))^2 + f''(s)\right)] \]

\[= \exp(f(s))\left[\left(\sum p_n \frac{g_n}{1 + sg_n}\right)^2\right] \]

- \[\sum p_n \left(\frac{g_n}{1 + sg_n}\right)^2 \] < 0

by convexity of \(x^2 \). The exponential growth function \(G(s) \) is concave.
Advantage of Re-balancing

Most of the mutual funds under perform their corresponding benchmark stock indices. So we need only consider investing in stock indices.
Advantage of Re-balancing

Most of the mutual funds underperform their corresponding benchmark stock indices. So we need only consider investing in stock indices.

Theoretically stock indices and fixed income investment options should have roughly the same growth rate in the long run according to economical equilibrium theory.
Advantage of Re-balancing

Most of the mutual funds under perform their corresponding benchmark stock indices. So we need only consider investing in stock indices.

Theoretically stock indices and fixed income investment options should have roughly the same growth rate in the long run according to economical equilibrium theory.

Historically DJIA has roughly the same growth rate compare to fixed income investment options measured by prime rate.
Advantage of Re-balancing

In the language of mathematics: adjusted for the opportunity cost $G(0) = G(1) = 1$.
Advantage of Re-balancing

In the language of mathematics: adjusted for the opportunity cost $G(0) = G(1) = 1$.

Then the concavity of G implies that, for any $s \in (0, 1)$,

$$G(s) > 1.$$
Advantage of Re-balancing

In the language of mathematics: adjusted for the opportunity cost $G(0) = G(1) = 1$.

Then the concavity of G implies that, for any $s \in (0, 1)$,

$$G(s) > 1.$$

Thus, re-balance with a fixed portion $s \in (0, 1)$ of the capital invested in DJIA is better than buy and hold this index.
The Impact of Frequency

Given $s \in (0, 1)$ what is the effect of adding a new re-balancing point in an existing re-balancing interval?
The Impact of Frequency

Given $s \in (0, 1)$ what is the effect of adding a new re-balancing point in an existing re-balancing interval?

Suppose the values of the index at the beginning and the end of the original re-balancing interval are b and e, respectively.
The Impact of Frequency

Given $s \in (0, 1)$ what is the effect of adding a new re-balancing point in an existing re-balancing interval?

Suppose the values of the index at the beginning and the end of the original re-balancing interval are b and e, respectively.

Adding a new re-balancing point and suppose that the value of the index at this point is m.
The Impact of Frequency

Then the difference of the exponential growth is:
Then the difference of the exponential growth is:

\[d = \left(1 + s\left(\frac{e}{b} - 1 \right) \right) \left(1 + s\left(\frac{m}{b} - 1 \right) \right) \]

\[- \left(1 + s\left(\frac{e}{m} - 1 \right) \right) \left(1 + s\left(\frac{m}{b} - 1 \right) \right) \]

\[= \frac{s(1 - s)(e - m)(m - b)}{mb} \]
Then the difference of the exponential growth is:

\[
 d = \left(1 + s\left(\frac{e}{b} - 1\right) \right) \\
 - \left(1 + s\left(\frac{e}{m} - 1\right) \right) \left(1 + s\left(\frac{m}{b} - 1\right) \right) \\
 = s(1-s)(e-m)(m-b) \quad \frac{mb}{mb}
\]

It follows that \(d > 0 \) when \(m \notin (b, e) \) and \(d < 0 \) when \(m \in (b, e) \).
Clearly we want to re-balance frequent enough to pick up the oscillations but not overly done to the extend that they interrupt the trends too many times.
Clearly we want to re-balance frequent enough to pick up the oscillations but not overly done to the extend that they interrupt the trends too many times.

In practice re-balance monthly is perhaps what one can afford to do in terms of cost and time.
Clearly we want to re-balance frequent enough to pick up the oscillations but not overly done to the extend that they interrupt the trends too many times.

In practice re-balance monthly is perhaps what one can afford to do in terms of cost and time.

So let us test monthly re-balancing using DJIA.
References

References

Markowitz (1952), Portfolio Selection, The Journal of Finance, 8: 77-91.
References

Markowitz (1952), Portfolio Selection, The Journal of Finance, 8: 77-91.

Samuelson (1979), Why we should not make mean log of wealth big though years to act are long, J. Banking and Finance, 3: 305-307.
Concluding remarks

- **Buy and hold** is not necessarily a sound investment strategy.
- In the study of portfolio theory the convex optimization method has not been fully explored, and
- the gap between theory and practice is still there.
THANK YOU!